Global existence, uniqueness, and continuous dependence for a semilinear initial value problem
نویسندگان
چکیده
منابع مشابه
Existence and uniqueness of solutions for a periodic boundary value problem
In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.
متن کاملOn the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales
n this paper, at first the concept of Caputo fractionalderivative is generalized on time scales. Then the fractional orderdifferential equations are introduced on time scales. Finally,sufficient and necessary conditions are presented for the existenceand uniqueness of solution of initial valueproblem including fractional order differential equations.
متن کاملGlobal Existence and Uniqueness of the Non - stationary 3 D - Navier - Stokes Initial - boundary Value Problem
We present a global unique weak 2 / 1 H solution of the generalized 3D Navier-Stokes initial value problem (for all 2 / 1 H v ) 0 ) , ( ) , ( ) , ( 2 / 1 2 / 1 2 / 1 v Bu v Au v u 2 / 1 0 2 / 1 ) , ( ) ), 0 ( ( v u v u . The global boundedness is a consequence of the Sobolevskii -estimate of the non-linear term ([SoP]) enabling the generalized energy inequality 2 1 2 /...
متن کاملExistence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem
In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0
متن کاملGlobal Existence, Uniqueness, and Continuous Dependence for a Reaction-diffusion Equation with Memory
Global existence, uniqueness and continuous dependence on initial data are established for a quasilinear functional reaction-diiusion equation which arises from a two-dimensional energy balance climate model. Our approach relies heavily on the so-called stability estimates for linear evolution equations of parabolic type (cf. 6]).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2003
ISSN: 0022-247X
DOI: 10.1016/s0022-247x(03)00126-4